
An Efficient Approach for High Utility

Itemset Mining

Ph.D. Synopsis

Submitted To

Gujarat Technological University

For the Degree

of

Doctor of Philosophy

in

Computer / IT Engineering

By

Patel Sureshkumar Bhikhabhai
Enrollment No: 189999913029

Supervisor:

Dr. Sanjay M. Shah

Professor & Head CE Department,

Government Engineering College Rajkot, Gujarat, India

Table of Contents

1. Title of the Thesis and Abstract.. 1

1.1. Title of the Thesis.. 1

1.2. Abstract ... 1

2. A brief description of the problem and state of the art approaches .. 1

2.1 Problem Background... 2

2.2 The traditional approaches for High Utility Itemset Mining... 4

2.2.1 Candidate generation and test based approaches for High Utility Itemset Mining 4

2.2.2 Tree based approaches for High Utility Itemset Mining ... 4

2.2.3 Utility List based approaches for High Utility Itemset Mining... 4

2.3 Open Issue ... 5

3. Objective, Scope of the work, and Problem Statement .. 6

3.1 Aim and Research Objectives ... 6

3.2 Scope of the research... 6

3.3 Problem Statement .. 6

4. Research contribution ... 7

4.1 An Efficient search space exploration technique for high utility itemset mining 7

4.1.1 A Construction of Utility list of 2-itemset and k-itemset .. 9

4.1.2 Pruning Mechanism... 10

4.1.3 Analysis of Proposed Method Vs. state of the art methods... 10

4.1.4 Performance Evaluation .. 11

4.2 Predicted Utility Co-exist pruning for high utility itemset mining ... 14

4.2.1 The PUCS (Predicted Utility Co-exist Structure).. 14

4.2.2 The PUCP (Predicted Utility co-exist Pruning) .. 15

4.2.3 Performance Evaluation .. 16

4.2.3.1 Execution Time Analysis... 16

4.2.3.2 Memory Analysis .. 19

5 Achievements with respect to objectives.. 20

6 Conclusion .. 20

7 Research publications ... 21

8 References .. 21

1

1. Title of the Thesis and Abstract

1.1. Title of the Thesis

An Efficient Approach for High Utility Itemset Mining.

1.2. Abstract

The conventional approach for association rule mining is a frequent itemset mining. It is widely used

and popular for extracting related items. Traditional approach focuses on whether the group of items is

frequently appear in the dataset or not. However, in certain real-world scenarios, it becomes essential to

consider the quantity and importance of items. For example, in a supermarket, identifying profitable

items from customer transaction data, or in the medical field, discovering combinations of symptoms

that are highly indicative of diseases. High utility itemset mining incorporates item’s quantity and

importance to addresses this need. Numerous research studies have been conducted on high utility

itemset mining, with utility list based methods emerging as efficient techniques. These methods avoid

the generation of candidate sets, which can be computationally expensive. However, a major drawback

of existing utility list based techniques is the need for costly join operations on utility lists. These

operations can degrade the algorithm's performance by increasing execution time and storage

requirements. The cost of the utility list join operations is directly related to the number of comparisons

required to find out the common transactions between the utility lists. In this research, proposed SCAO

(Support Count Ascending Order) based search space exploration technique to reduce the number of

comparisons required to find common transactions between the utility lists. So, it will minimize the cost

of the join operations. Also, existing state of the art approaches perform unnecessary utility list join

operations of the itemsets which are not high utility itemsets. To deal with this problem, proposed PUCP

(Predicted Utility Co-exist Pruning) uses PUCS (Predicted Utility Co-exist Structure) to eliminate

unnecessary join operations. The proposed approach using the PUCP called as PUCP-Miner. The

performance of the proposed approaches are evaluated with the existing algorithms like HUI-Miner,

mHUI-Miner and ULB miner on some of the standard real datasets. The experimental results

demonstrate that the proposed SCAO-based approach and PUCP-miner have outperformed existing

state-of-the-art methods by up to 59% in terms of execution time and up to 46% in memory consumption.

2. A brief description of the problem and state of the art approaches

Data mining techniques, including Frequent Itemset Mining (FIM) [2] and High Utility Itemset Mining

(HUIM)[3][4][5], are utilized to uncover crucial patterns concealed within vast datasets[1]. FIM is

extensively applied in real-life scenarios such as customer behaviour analysis, examining the

contribution of symptoms to predict diseases, and identifying valuable customers. However, a

2

significant limitation of FIM is its sole consideration of item present or absent within transactions [2][6].

To overcome this limitation, it is essential to incorporate item quantities and their importance, which

play a vital role in various applications, especially in transaction databases [3] [7] [8] [9]. High Utility

Itemset Mining (HUIM) focuses on identifying itemsets that generate significant profits or have high

importance [3] [5] [10] [11] [12]. This technique takes into account both the count and profit of the items

in the itemset. HUIM extracts sets of items whose utility exceeds a user-defined threshold. The HUIM

problem originates from FIM, but it presents greater challenges compared to FIM due to the lack of

adherence to the downward closure property. In FIM, the apriori characteristic is utilized to effectively

reduce the search space [2]. In contrast to FIM, utility measures employed in HUIM cannot be directly

utilized for efficient search space reduction. This is primarily due to the fact that subsets of high utility

itemsets may have low utility, and conversely, subsets of low utility itemsets may have high utility.

Consequently, the reduction of the search space becomes more challenging in HUIM compared to FIM.

In the context of transaction databases, several methods have been developed to discover high utility

itemsets, employing different data structures and pruning strategies. HUIM approaches are mainly

categorised as candidate generation and test based, Tree based and Utility list based. Among them Utility

list based approach is most recent and efficient approach. List based approaches does not generate the

candidate itemsets [14]. Despite the better performance of these approaches, costly utility list join

operations limits the performance. The efficiency of join operations in the utility list based approach

depends on the number of comparisons required to identify the common transactions in both utility lists.

This comparison process influences the cost of join operations and consequently, impacts the overall

performance and running time of the algorithm.

2.1 Problem Background

Let set I = {i1, i2, i3 ……….,in} single itemset. Database (DB) consist of set of transactions and utility

table as shown in Table1 and Table2, respectively. The utility table defines the utility/profit of an

individual item. The transaction consist of set of items with quantity. The set of transactions are (T1,

T2, T3……Tm). Each transaction is uniquely identified as Ti. The transaction Ti is defined as= { : () | 1 ≤ ≤ , 1 ≤ ≤ } (1)

The set of items in the transaction Ti is subset of I. The set of items in Ti are associated with quantities

defined as count q() (where 1 ≤ k ≤ n) considered as an internal utility of item in the transaction. The

utility table maintains the utility (importance / weight / profit) values p(i) of each item i in I, which is

considered as an external utility.

Definition 1: Item's Utility.

For the item ik in the transaction Tj, the item’s utility of ik is u (ik,Tj) = q(ik,Tj) × p(ik). i.e u(a,T3)= q (m,

T5) × p(m) = 15

3

Table 1: Sample Transaction Database

Table 2. Utility Table of sample database

Table 2: Sample Utility in DB

Definition 2: Itemset‘s Utility.

For the itemset Px in the transaction Tj, the itemset Px‘s utility is(,) = (,)∈ ^ ∈ (2)
i.e consider itemset Px={m,n}, u(Px,T5)=u(m,T5) + u(n,T5)=25

Definition 3: Itemset’s utility in database DB.
For the itemset Px and the transaction database DB, the Px’s utility in DB is() = (,)⊂ ^ ∈ (3)
i.e consider itemset Px={k,l}, u(Px)=u(Px,T3) + u(Px,T4) + u(Px,T5) = 32

Definition 4: High Utility itemset.

The itemset Px is high utility itemset, if it’s utility value is higher than the user defined MinUtility

threshold

HUIset = {Px | Px ⊆ I, u(Px) ≥ MinUtility} (4)
i.e consider MinUtility=15 and itemset Px = {k,l}, u(k,l) is 32 that is more than MinUtility indicating

that Px is a high utility itemset.

Definition 5: High Utility Itemset Mining.

Find out all the itemsets from the transaction database, which has utility value more than the user

specified minimum utility (MinUtility) threshold.

Definition 6: Transaction’s Utility
The transaction's utility is obtained by summing up the utility values of all the items present in that

particular transaction. It is defined as() = (,) (5)∀ ∈
i.e TU(T1) = u(l,T1) + u(m,T1) + u(n,T1) = 9

4

Definition 7: Transaction Weighted Utility (TWU)

The Transaction Weighted Utility (TWU) of an itemset Px is calculated as the sum of the transaction

utilities of all transactions that contain the itemset Px.() = () (6)∈
i.e TWU(n) is the total of transaction utility of T4 and T5 as n belongs to Transaction T4 and T5, So

TWU(n) is 52

2.2 The traditional approaches for High Utility Itemset Mining

Based on different mining techniques, data structure and pruning strategies, HUIM algorithms are

mainly classified into three categories

(1) Candidate generation and test based approaches

(2) Tree based approaches

(3) Utility List based approaches.

2.2.1 Candidate generation and test based approaches for High Utility Itemset Mining

Apriori based approaches generates level wise candidate sets and prune some itemsets based on various

measures like TWU, Utility upper bound, expected utility etc[1][4][5][9][16][27]. The main drawback

of these approaches are, it scans the database multiple times. It generates the huge amount of candidate

itemsets as it relies on the loose upper bound for pruning. It also generates some of the patterns which

are not present in the database resulting waste of time to process these patterns, making algorithms less

efficient.

2.2.2 Tree based approaches for High Utility Itemset Mining

Tree based approaches for HUIM work in three steps:

(1) Scan the database one or more time and construct the tree.

(2) Restructure the tree to reduce the candidate sets, decrease the overestimation etc.

(3) Discover the high utility mining from the restructured tree.

Compress the dataset into tree structure. Utility measures like TWU, sum of item quantity used for the

pruning which are overestimation [7][8][12][19]. These are the pattern growth approaches. For

restructure/mining it recursively process the tree that is time consuming task.

2.2.3 Utility List based approaches for High Utility Itemset Mining

Previous approaches for high utility itemset mining generates candidate itemsets. It is the time

consuming and consume more memory to store the candidate itemsets. In 2012, Liu and Qu proposed

5

first single phase algorithm for high utility itemset mining without candidate generation [14]. It reduces

the mining time as it removes the huge amount of candidate generation problem of previous apriori

based and tree based approaches. It proposed novel data structure utility list to store the utility

information of the itemsets and efficient pruning strategies based on sum of item utility and the

remaining utility. It maintains the utility lists of itemsets. Novel Utility list structure is a triplet <Tid,

iutility, rutility> where Tid represents the transaction ID in which the itemset exist, iutility is the utility

value of the itemset, rutility is the heuristic information which stores sum of the utilities of items that

come after itemset in the transaction. It explores the search space as TWU in ascending order to

gradually extend the itemset. It performs the costly join operations on utility list of (k-1) itemsets to

construct the utility list of k-itemset. It also constructs the unnecessary utility list of the itemsets which

are not available in the dataset. In 2017, Peng, Koh and Riddle proposed tree structure [13] to avoid the

generation of utility lists of the itemsets which are not present in the database. The HUI Miner and

FHM[18] explore the search space using the set enumeration tree so these algorithms construct the utility

list of some itemsets which are not exist in database. Due to that, HUI Miner and FHM algorithms are

somewhat inefficient. Modified HUIMiner incorporates tree structure IHUP into HUIMiner. As per

IHUP Tree Structure property, the path of tree corresponds to transaction in database means information

about all the items in a transaction is stored together in the tree. In 2017, Duong, Viger, Ramampiaro,

Norvag and Dam proposed efficient high utility itemset mining using buffered utility list [17]. Authors

proposed novel list structure called utility list buffer to store the item utility information and efficient

join operation to generate a segment of itemsets in linear time. The ULB is based on the buffering utility

information to reduce the memory consumption. The ULB structure reuses the memory of the itemset

that will not further expanded. In 2019, Qu, Liu and Viger proposed new structure Utility-List* [10]

which is higher in performance than HUI-Miner. It has been observed that in HUI-Miner the utility list

of k-itemsets is constructed using the Tid comparisons of both utility lists of (k-1) itemsets but all the

Tid comparisons are not effective. The effective comparisons are on matching of the Tid. The ineffective

comparison degrades the algorithm performance. The HUI-Miner* remove these ineffective comparison

by Utiliiy-list* structure. The utility list based approaches are performing better in terms of execution

time and memory consumption. Although the performance of these approaches are limited due to

unnecessary costly utility list join operations.

2.3 Open Issue

The current methods for HUIM suffer from time consuming operations and high memory requirements

due to generation of large number of candidate itemsets, inefficient pruning mechanisms. These

approaches employ multiple pruning measures that tend to overestimate, resulting in unnecessary

computations and increased resource usage. Utility list based approaches outperform in HUIM as they

6

do not generate candidate itemsets. However, the performance of list based algorithms is limited by the

need to perform a large number of expensive utility list join operations. These join operations contribute

to the computational overhead and can affect the efficiency of the algorithms. Therefore, there is a need

to address the computational cost associated with utility list join operations to further enhance the

performance of list based HUIM algorithms. The cost of join operations in utility list based approaches

is directly proportional to the number of comparisons needed to find common transactions between the

utility lists. Join count, number of comparisons are the challenges to reduce the cost of the utility list

join operations. Hence, it will improve the performance of the mining algorithm in execution time and

memory consumption.

3. Objective, Scope of the work, and Problem Statement

3.1 Aim and Research Objectives

The main aim of this research is to develop efficient high utility itemset mining approach by eliminating

the unnecessary utility list join operations and reducing the number of comparisons. This research work

proposes to achieve the following objectives:

• To study and investigate existing methods for the high utility itemset mining.

• To identify the challenges for the high utility itemset mining.

• To identify the scope to improve the performance of the high utility itemset mining methods.

• To develop and investigate the efficient search space exploration technique to reduce the cost of

utility list join operations by reducing the number of comparisons required to join utility lists.

• To design novel structure to store the predicted utility of the itemsets that can be used to develop

efficient pruning mechanism.

• To develop and investigate efficient pruning mechanism to reduce the number of join operations by

eliminating unnecessary join operations of utility lists.

• To evaluate performance of proposed approaches and compare the results with existing state-of-the-

art methods.

3.2 Scope of the research

The aim of this research is, improve the performance of High Utility Itemset Mining approaches. The

research is mainly focused on transactional datasets.

3.3 Problem Statement

The problem statement of this research is:

“To Design an Efficient High Utility Itemset Mining Approach to eliminate unnecessary join operations

and decrease the number of comparisons for utility list join operations”

7

4. Research contribution

The main contribution of this research is to design efficient utility list join operations by reducing the

number of comparisons by efficiently exploring the search space required to find out the common

elements between the utility lists. To design an efficient pruning mechanism PUCP (Predicted Utility

Co-exist pruning) to reduce the number of join operations.

The methodology of research

The research methodology comprises the developing a novel search space exploration sequence to

minimize the cost associated with utility list join operations. Proposed PUCP approach reduces the

number of join operations. Performances of the proposed approaches evaluated with state of art methods

on standard real datasets.

4.1 An Efficient search space exploration technique for high utility itemset mining

Exploration of the search space is the order in which the itemset is extended. The search space is

maintained as set enumeration tree as shown in Figure 2. The existing HUIM approaches explore the

search space as TWU ascending order to extend the itemsets. The proposed approach explores the search

space as support count ascending order that can reduce the number of comparisons required to join the

utility lists. The proposed SCAO-based HUIM process model is presented in Figure 1. The proposed

approach works in three phases.

Figure 1: Proposed Model for SCAO based search space exploration technique.

8

Phase 1: Construction of a revised database

Scan the dataset to calculate the TWU and support count for each item. Unpromising items,

which have a TWU lower than the MinUtility threshold, are then discarded. The database is scanned

once again to rearrange all transactions in ascending order based on their support count. The resulting

set of revised transactions is referred as the revised database. For instance, the data in Table 1 and 2,

with MinUtility value is 40, Items p and q are discarded as TWU of items fall below the threshold. The

items in each transaction are then rearranged in ascending order based on their support count, resulting

in revised transactions such as m-n-o-k-l.

Phase 2: Construction of initial utility list

The database is scanned again to create the initial utility list for each promising item. The utility

list of items consists of triplets associated with the transaction containing the item. Each triplet contains

the following information: TRid (Item's transaction ID), iutility (Item's utility value in a revised

transaction), and rutility (Item's remaining utility value) [12, 13, 14, 15, 16].

Definition 8: For the itemset X and transaction T, all the items in Transaction T that come after itemset

X where X ⊆ T is denoted as T|X. i.e T5 | mn = {okl} and T3 | o = {kl}

Table 3: Utility Lists of 1-Itemset and 2-itemset

Definition 9: Remaining utility

The total utility of all the items that follows the itemset X in transaction T, is represented as rutility(X,T).

rutility(X,T) = ∑ u(i, T)∊(|) where X⊆T (7)
For example, constructing the item o’s utility list in transaction T3, iutility value of o in T3 is 4 and

remaining utility rutility value of o in T3 = rutility (o, T3) = u(k, T3) + u(l, T3) = 15+4 =19. Similarly,

the initial utility list of all promising items (m, n, o, k, l) is constructed as shown in Table 3.

{m}

Tid Iutility rutility
T1 6 3
T5 9 33

{n}

Tid Iutility rutility
T4 4 6
T5 16 17

{o}

Tid Iutility rutility
T1 2 1
T3 4 19
T5 10 7

{k}

Tid Iutility rutility
T3 15 4
T4 5 1
T5 5 2

{l}

Tid Iutility rutility
T1 1 0
T3 4 0
T4 1 0
T5 2 0

Tid Iutility rutility
T5 25 17

{mn}

Tid Iutility rutility
T1 8 1
T5 19 7

{mo}

9

Figure 2: Set Enumeration Tree

Phase 3: Search space exploration & mining process

The search space can be represented by a set enumeration tree represented in Figure 2. Once the

initial utility list is created, the proposed technique explores the search space in ascending order of

support count called Support Count Ascending Order based search space exploration technique (SCAO).

It recursively extends the (k-1) itemset by combining with its successor item. Pruning is performed based

on the sum of iutility and rutility to determine whether the itemset can be further extended. The specific

details of the pruning mechanism is in section 4.1.2. The utility lists of the k-itemset are constructed by

joining the utility lists of the (k-1) itemset and utility list of its successor item. The details of the utility

list join operation is in section 4.1.1. Additionally, the technique simultaneously discovers the high

utility itemsets.

4.1.1 A Construction of Utility list of 2-itemset and k-itemset

Consider the 2-itemset x = {mn}. To construct the utility list of itemset x, the join operation is performed

on the utility lists of m and n. During the join operation, a common transaction is searched from both

utility lists, and the element <Tid, iutility, rutility> is added to the utility list of {mn}. Here, Tid

represents the common transaction ID, iutility represents the sum of iutility values from utility lists of

{m} and {n}, and rutility represents the rutility value of {n}, as itemset {n} comes after itemset {m}

according to SCAO. For example, when constructing the utility list of {mn}, the utility lists of m and n

are joined. There is a common transaction ID T5, the element <T5, 25, 17> is added to utility list of

{mn}. Similarly, add all the elements which have common transactions into the utility list of {mn}.

Table 3 shows the utility lists of 2-itemsets. The utility list of a k-itemset can be constructed by joining

the utility lists of two (k-1) itemsets. By performing a join operation, the common transactions between

the two (k-1) itemsets are identified, and the corresponding elements are added to the utility list of the

k-itemset. This process allows for the construction of utility lists for higher-order itemsets by leveraging

the utility information from smaller itemsets.

10

4.1.2 Pruning Mechanism

In depth search space exploration identified all high utility itemset, but it consumes more time because

large number of items are available in datasets. Therefore, it is necessary to trim the search space by

discarding the itemsets that does not contribute to the high utility. Use the itemset iutility and rutility

values from the itemset's utility list to narrow the search field. Only those itemsets are extended further

if total of its iutility and rutility values is no less than MinUtility threshold. Otherwise it can be discarded

as per lemma-1[16] because any of the superset of such itemset is not a high utility itemset. The total of

iutility values from itemset’s utilitylist is the utility of the itemset. The itemset is a high utility itemset if

it’s utility is no less than the MinUtility criterion.

Lemma-1:- If the sum of all iutility and rutility values from X’s utility list UL(X) is no less than the

minUtility, then any itemset X' that is the extension of itemset X is not a high utility itemset.

i.e, consider the itemset {mn}’s utility list ULmn, the total of itemset’s iutility and rutility is 42,

which is larger than the MinUtility threshold 40. So it can be further extended. While the total of iutility

and rutility values of {mo} is 35, so it can be discarded without further extended.

4.1.3 Analysis of Proposed Method Vs. state of the art methods.

The use of SCAO based search space exploration techniques reduce the number of comparisons required

to utility list join operations. An analysis of their time complexity reveals that the proposed SCAO-based

algorithms require fewer comparisons when compared to other methods for joining utility lists. Let's

consider the utility lists ULa, ULb, and ULc, which represent the utility values of 1-itemsets a, b, and c,

respectively. The support counts for these utility lists are denoted as p, q, and r, respectively, with the

condition that p ≥ q ≥ r. Now, for the construction of the utility list of itemset ab, perform a join operation

between ULa and ULb.

Case 1: Consider the order sequence a-b-c is TWU ascending order of itemset a, b and c. Existing state-

of-art algorithms construct the utility lists in sequence as ULab, ULac, ULabc. To construct ULab required

q log2 p comparisons while ULac required r log2 p. The maximum number of entries in ULab is q and in

ULac is r.

ULabc , Utilitylist of abc constructed by performing join operation on ULab and ULac, the

minimum number of comparisons are r log2 q. Therefore, the total numbers of comparisons are q log2 p

+ r log2 p + r log2 q

While SCAO-based approach constructs the utility list in the sequence as ULcb, ULca, and then

ULcba because the SCAO sequence is c-b-a. To construct ULcb required r log2 q, and to construct ULca

required r log2 p. The maximum number of entries in ULcb is r, and ULca is r. To construct the utility list

11

ULcba of itemset cba by joining ULcb and ULca, the number of comparisons is r log2 r. Therefore, total

number of comparisons are r log2 q + r log2 p + r log2 r which is lesser or equal to q log2 p + r log2 p + r

log2 q (∵ r≤ q and r ≤p ⇒ r log2 r ≤ q log2 p).

Case 2: TWU ascending order for itemset a, b and c is a-c-b. Existing state-of-art algorithms construct

the utility lists in sequence as ULac, ULab, ULacb. So, the total numbers of comparisons are r log2 p + q

log2 p + r log2 q. While SCAO based approach constructs the utility list in the sequence as ULcb, ULca,

and then ULcba, so the total number of comparisons is r log2 q + r log2 p + r log2 r, which is lesser or

equal then r log2 p + q log2 p + r log2 q (∵r ≤ q and r ≤ p ⇒r log2 r ≤ q log2 p).

Case 3: TWU ascending order for itemset a, b and c is b-a-c. Existing state-of-art algorithms construct

the utility lists in sequence as ULba, ULbc, ULbac. So, the total numbers of comparisons are q log2 p + r

log2 q + r log2 q. While in proposed SCAO based approach required total r log2 q + r log2 p + r log2 r

comparisons which is lesser or equal then q log2 p + r log2 q + r log2 q (∵ r ≤ q ⇒r log2 p ≤ q log2 p

and r log2 r ≤ r log2 q).

Case 4: Consider the order sequence b-c-a is TWU ascending order of itemset a, b and c. Existing state-

of-art algorithms construct the utility lists in sequence as ULbc, ULba, ULbca So, the total numbers of

comparisons are r log2 q + q log2 p + r log2 q. While Proposed SCAO based approach required total r

log2 q + r log2 p + r log2 r comparisons which is lesser or equal then r log2 q + q log2 p + r log2 q (∵r ≤

q⇒r log2 p ≤ q log2 p and r log2 r ≤ r log2 q).

Case 5: Consider the order sequence c-a-b is TWU ascending order of itemset a, b and c. Existing state-

of-art algorithms construct the utility lists in sequence as ULca, ULcb, ULcab. So, the total numbers of

comparisons are r log2 p + r log2 q + r log2 r., which are the same as the proposed SCAO-based method.

Case 6: TWU ascending order for itemset a, b and c is c-b-a. The proposed SCAO-based algorithm

performs Utility list join sequence order c-b-a also. Therefore, the numbers of comparisons are the same.

From all the above cases, it has been proved that the proposed join sequence support count ascending

order (SCAO) requires fewer comparisons. Hence, it reduces the cost of utility list join operations.

4.1.4 Performance Evaluation

The proposed approach SCAO-based search space exploration technique incorporates into existing

algorithms such as HUI-Miner, mHUI-Miner, and ULB-Miner. To evaluate the effectiveness of this

approach, extensive testing is conducted on diverse real datasets using different MinUtility percentages.

The experimental results are then compared with other state-of-the-art methods.

4.1.4.1 Experimental Environment

All experimental algorithms were implemented in Java and the tests were conducted on a system with

8GB RAM and an Intel Core i5 processor running Windows 10 Pro. To assess the algorithm's

12

performance under different MinUtility values, standard real-time datasets [17] were used. Table 4

provides details of the dataset properties and a comprehensive description. The datasets exhibited

variations in the number of items, transactions, and transaction lengths.

Table 4: Characteristics of Dataset [20]

Sr.No Dataset Name Number of
Transactions

Number
of Items

Average
Length

1 Foodmart 4141 1559 4.4
2 Connect 67,557 129 43
3 Chess 3196 75 37
4 Retail 88,162 16,470 10.3
5 BMS 59,602 497 2.51
6 Kosark 990002 41270 8.1000
7 ecommerce 14975 3468 11.71

4.1.4.2 Performance Evaluation with HUI-Miner

The compared algorithms were executed on diverse datasets using progressively decreasing utility

thresholds until either the execution time became excessive or the memory reached its capacity. The

execution time was recorded during these experiments. The running time of the proposed SCAO-HUI-

Miner is compared with HUI-miner on various real dataset. The result analysis as in Table 5 and

Figure 3 shows the proposed SCAO-HUI-Miner outperform with HUI-Miner by 6 to 21 percent on some

real dataset.

Table 5: Execution time comparison HUI-Miner Vs SCAO-HUI-Miner

Dataset
HUI-Miner

(Execution time in ms)
SCAO-HUI-Miner

(Execution time in ms) Improvement (%)
retail 617 479 21.32
bms 1088 904 16.86

foodmart 1105 1019 8.09
chess 4139 3611 12.43
kosark 4420 3748 15.16

Figure 3: Execution time comparison HUI-Miner Vs SCAO-HUI-Miner

13

4.1.4.3 Performance Evaluation with mHUI-Miner

The comparative analysis of running time required for the proposed approach employs to mHUI-Miner

called SCAO-mHUI-Miner and mHUIMiner as shown in Table 6 and Figure 4. Proposed technique

SCAO- mHUIMiner take 6% to 23% less time than mHUI-Miner.

Table 6: Execution time comparison mHUI-Miner Vs SCAO-mHUI-Miner

Dataset
mHUI-Miner

(Execution time in ms)
SCAO-mHUI-Miner

(Execution time in ms) Improvement (%)
Foodmart 225 177 21.24

bms 385 295 23.37
retail 566 528 6.48
chess 3067 2535 18.85
kosark 5241 4770 8.55

Figure 4: Execution time comparison mHUI-Miner Vs SCAO-mHUI-Miner

4.1.4.4 Performance Evaluation with ULB-Miner

The comparison of running time of proposed approach incorporate into ULB-Miner called SCAO-ULB-

Miner and ULB-Miner as shown in Table 7 and Figure 5. The proposed technique SCAO-ULB-Miner

has been found to be 10% to 24% faster than ULB-Miner.

Table 7: Execution time comparison ULB-Miner Vs SCAO-ULB-Miner

Dataset
ULB-Miner

(Execution time in ms)
SCAO-ULB-Miner

(Execution time in ms) Improvement (%)

Foodmart 322 231 23.62

retail 690 573 16.94

bms 829 680 17.97

chess 1170 1030 11.66

kosark 4797 4262 10.83

14

Figure 5: Execution time comparison ULB-Miner Vs SCAO-ULB-Miner

4.2 Predicted Utility Co-exist pruning for high utility itemset mining

Based on the items co-existence in the dataset, Predicted Utility Co-Exist Structure known as PUCS

proposed to store the utility data and Predicted Utility Co-Exist Pruning known as PUCP proposed to

eliminate unnecessary utility list join operations. PUCP mechanism greatly reduces the utility list join

operations due to that it improves the algorithm’s performance. It eliminates the low utility itemset

directly without performing the join operations. Details of proposed structure PUCS and proposed

pruning method PUCP are described in the next section.

4.2.1 The PUCS (Predicted Utility Co-exist Structure)

A novel structure called PUCS based on the coexistence analysis of the item is shown in Figure 6. The

set of triplet of the form (x, y, PU) ∈ IxIxR is known as PUCS. Predicted utility of itemset xy is

represented by PU in the triplet. The PUCS was created concurrently with the creation of the initial

utility list for the items during the second database scan.= (() + ())∈ (8)
Figure 7 illustrates the PUCS structure of sample dataset presented in Table 1 & 2. In this context, we

define the pruning condition as “If there is no tuple (x, y, PU) in PUCS structure where PU is greater

than or equal to MinUtility, then we consider the itemset p = {xy} and its supersets as itemsets with low

utility. Consequently, there is no need to further explore these itemsets.

L M N O

K PUKL PUKM PUKN PUKO

L PULM PULN PULO

M PUMN PUMO

N PUNO

Figure 6: PUCS Structure

N O K L

M 42 35 16 18

N 33 33 23

O 40 23

K 32

Figure 7: PUCS of the sample database

15

During the second database scanning, the PUCS structure was constructed along with an initial utility

list of items. Within the PUCS structure, we consider the elements for item M and N, represented as the

triplet <M, N, PUMN>. Here, PUMN corresponds to the sum of the iutility and rutility values for the

itemset {MN}. This value can be calculated during the initial database scanning process.

Additionally, we propose a unique pruning strategy called PUCP (Predicted Utility Co-exist Pruning) to

minimize the number of join operations using the PUCS structure. This strategy aims to efficiently

predict and remove itemsets that are unlikely to have significant utility, thereby reducing the

computational burden associated with unnecessary join operations.

4.2.2 The PUCP (Predicted Utility co-exist Pruning)

According to lemma-1, previous algorithms like HUI-miner, mHUI-Miner and ULB-Miner trim the

search space, using the addition of iutility and rutility values of an itemset. For any itemset {xy}, these

algorithms construct itemset {xy}'s utility list even though it is a low utility itemset. Then decide whether

itemset {xy} should be extended further based on sum of iutility and rutility values. These algorithms

perform a number of costly utility list join operations for constructing low utility itemset.

Our proposed PUCP eliminates the joining operation for the low utility itemset. For constructing the

utility list of itemset {xy}, proposed algorithm called PUCP-Miner, checks the element <x, y, PUxy>

from PUCS. If an element does not exist in the PUCS where PUxy ≥ MinUtility, itemset {xy} is discarded

directly without constructing the utiliy list of itemset {xy}. As a result, it will minimize join operations

of utility list.

Take the MinUtility threshold 40 as an example. To construct the itemset {MN} and its utility list,

apply join operation on utility list of individual items M & N. According to PUCP, check the PUMN from

the PUCS that is 42, so join operations has performed. While for construction of itemset {MO} the

PUMO from the PUCS is 35, less than MinUtility threshold, so there is no need to perform the join

operation. By removing needless join operations, this pruning method PUCP to reduce the amount of

join operations significantly.

Overall procedure for discovering the high utility itemsets by proposed approach namely PUCP-Miner

is represented in Figure 8.

First PUCP-Miner scans the dataset to calculate the TWU and support count of each individual item and

discards the unpromising items. The items with TWU is less than the MinUtility threshold is considered

as unpromising items. After that, it arranges the remaining items in transaction as support count

ascending order (SCAO) called revised transaction. The set of revised transaction, called revised

database. Revised database is scanned and it generates the initial utility list of each items and constructs

the PUCS simultaneously.

16

The method then explore search space represented in set enumeration tree as support count ascending

order to extend the itemset by combining with other item. Next, it fetches the element from the PUCS

corresponding to the itemset to be extended and item to join. If PU of the element satisfies the minUtility

requirement then the join operation is performed. Otherwise, the join operation is eliminated. The utility

of the extended itemset is checked if it is higher or equal to minUtility then it will added in HUI list.

Next, it checks the pruning condition, if the iutility and rutility of the itemset is higher than the minUtility

threshold then the itemset is further extended. This procedure is performed recursively for exploring all

itemset.

Figure 8: Proposed Model for PUCP-Miner.

4.2.3 Performance Evaluation

Comprehensive experiments were conducted on a variety of real datasets, employing different

MinUtility percentages, to evaluate performance of the proposed PUCP-Miner thoroughly. The

experimental results of PUCP-Miner were compared to state-of-the-art methods including mHUI-Miner,

ULB-Miner, and HUI-Miner, specifically focusing on execution time and memory requirements.

Standard real-time datasets were utilized in the experiments to accurately measure the algorithm's

performance. The detailed description of the datasets used in the experiments is presented in Table 6.

4.2.3.1 Execution Time Analysis

Execution time of proposed approach PUCP-Miner with state of the art approaches HUI-Miner, mHUI-

Miner, and ULB-Miner on different datasets are listed into Table 8, 9 and 10, respectively. Also

execution time is plotted in Figures 9, 10 and 11 for performance comparison. It is observed that on

17

ecommerce dataset, Compared to HUI-Miner, mHUI-Miner, and ULB-Miner, suggested PUCP-Miner

is almost 62%, 65% and 20% faster, respectively. On the BMS dataset, PUCP-Miner takes nearly 45%

less time than HUI-Miner, 46% less time than mHUI-Miner, and 42% less time than ULB-Miner. On

the Foodmart dataset, PUCP-Miner is almost 67% quicker than HUI-Miner, 18% quicker than mHUI-

Miner, and 18% quicker than ULB-Miner. On the retail dataset, proposed PUCP-Miner almost takes

88%, 74% and 35% less running time than HUI-Miner, mHUI-Miner and ULB-Miner respectively.

Lastly, on the kosark dataset, PUCP-Miner is approximately 10% faster than HUI-Miner, 14% faster

than mHUI-Miner, and 19% faster than ULB-Miner. From the execution time analysis, it is concluded

that proposed PUCP-Miner outperforms on retail, BMS, eCommerce and foodmart datasets and it has a

satisfactory improvement in kosark datasets.

Table 8: Execution time comparison HUI-Miner Vs PUCP-Miner

Dataset
HUI-Miner

(Execution time in ms)
Proposed PUCP-Miner
(Execution time in ms)

Improvement (%)

Foodmart 393 131 66.67
BMS 394 218 44.67

ecommerce 1323 497 62.43
kosark 4415 3020 31.6
Retail 37857 4471 88.19

Figure 9: Execution time comparison HUI-Miner Vs PUCP-Miner.

Table 9: Execution time comparison mHUI-Miner Vs PUCP-Miner.

Dataset
mHUI-Miner

(Execution time in ms)

Proposed PUCP-Miner

(Execution time in ms)
Improvement (%)

Foodmart 161 131 18.63
BMS 402 218 45.77

ecommerce 1434 497 65.34
kosark 4030 3020 25.06
Retail 17002 4471 73.7

18

Figure 10: Execution time comparison mHUI-Miner Vs PUCP-Miner.

Table 10: Execution time comparison ULB-Miner Vs PUCP-Miner

Dataset

ULB-Miner

(Execution time in ms)

Proposed PUCP-Miner

(Execution time in ms) Improvement (%)

Foodmart 160 131 18.13
BMS 378 218 42.33

ecommerce 624 497 20.35
Kosark 4112 3020 26.56
Retail 6897 4471 35.17

Figure 11: Execution time comparison HUI-Miner Vs PUCP-Miner

From the overall result analysis as shown in Table 11, it is observed that using only SCAO based
approach improves the performance of HUI-Miner approximately 14 %, mHUI-Miner 16% and ULB-
Miner 17%. While PUCP-Miner incorporating both SCAO based search space exploration and PUCP is
approximately 59% faster than HUI-Miner, approximately 46% faster than mHUI-Miner and
approximately 29% faster than ULB-Miner.

19

Table 11: Overall improvement of proposed approaches

Algorithms

Average improvement (%)

SCAO
Based Approach

PUCP-Miner
(SCAO + PUCP)

HUI-Miner 13.33 58.71
mHUI-Miner 15.74 45.7
ULB-Miner 17.44 28.50

4.2.3.2 Memory Analysis

Memory requirement of PUCP-Miner with state of the art approaches mHUI-Miner and ULB-Miner on

different datasets are listed into Table 12 and 13, respectively. Also memory requirement is plotted in

Figures 12 and 13 for performance comparison. The findings from the experiments indicate that PUCP-

Miner utilizes significantly less memory compared to mHUIMiner and ULB-Miner on the ecommerce

dataset, with reductions of approximately 46% and 8%, respectively. On the BMS dataset, PUCP-Miner

consumes around 12%, and 13% less memory than mHUIMiner, and ULB-Miner, respectively. When

considering the Foodmart dataset, PUCP-Miner demonstrates a memory reduction of 47% and 8%

compared to both mHUI-Miner and ULB-Miner. For the retail dataset, PUCP-Miner requires 32% and

12% less memory than mHUI-Miner and ULB-Miner, respectively. Finally on the kosark dataset PUCP-

Miner consumes approximately 9% and 7% less memory than mHUI-Miner and ULB-Miner.

Table 12: Memory Requirement comparison mHUI-

Miner Vs PUCP-Miner

Dataset

mHUI-
Miner

(memory
in MB)

PUCP-
Miner

(memory
in MB)

Improvement
(%)

Foodmart 67.3 42.7 36.55
Retail 511.78 349.36 31.74
BMS 24.04 20.92 12.98

Ecommerc

e

87.91 47.3 46.19
Kosark 509 465 8.64

Table 13: Memory Requirement comparison ULB-Miner Vs

PUCP-Miner

Dataset

ULB-Miner
(memory in

MB)

PUCP-
Miner

(Memory in
MB)

Improvement
(%)

Foodmart 57.6 42.7 25.87
Retail 398.82 349.36 12.4
BMS 24.11 20.92 13.23

Ecommerce 51.17 47.3 7.56
Kosark 495.79 465 6.21

20

Figure 12: Memory comparison mHUI-Miner Vs PUCP-

Miner

Figure 13: Memory comparison ULB-Miner Vs PUCP-Miner

5 Achievements with respect to objectives

The main objective of the work is to reduce the utility list join cost and join operation count to improve

the performance of utility list based high utility itemset mining approach. To achieve this objective, we

proposed:

(1) SCAO based search space exploration techniques to reduce the utility list join cost

(2) A novel structure called PUCS (Predicted Utility co-exist structure) and PUCP (Predicted utility co-

exist pruning) to eliminate the unnecessary utility list join operation.

Hence it reduces the number of join operations. The cost of the join operation is directly related to

number of comparisons required to search common transaction from both the utility lists. SCAO based

approach reduces the number of comparisons. The other proposed approach namely PUCP-Miner uses

the PUCS & PUCP to reduce the number of join operations. PUCP eliminates the unnecessary utility

list join operations. Hence, it improves the performance of the HUIM algorithms.

6 Conclusion

High utility itemset mining is widely used in many business applications to discover the profitable items

from the transactional dataset, identify valuable customer, and discover the significant symptoms from

the medical dataset. Among the most research works carried out for HUIM, the utility list based

approaches are outstanding as it does not generate the candidate itemset. However the performance of

the utility list based approaches are limited due to costly utility list join operations. These approaches

also perform unnecessary utility list join operations for the low utility itemsets. The cost of the join

operation is directly related to the number of comparisons required to search the common transactions

between utiliy lists. SCAO based search space exploration techniques greatly reduces such comparisons.

Hence, it improves the performance of the HUIM approach. PUCP (Predicted Utility Co-exist Pruning)

uses the PUCS (Predicted Utility Co-exist Structure) to eliminate the unnecessary utility list join

21

operations for the low utility itemsets. PUCP decides in advance whether it is necessary to perform join

operations or discard the itemset, it reduces the number of join operations. The experimental results

shows that SCAO based search space exploration techniques improve the performance of the HUIM

approach from 13 to 18 percent. While the combination of both SCAO based search space exploration

techniques and PUCP called PUCP-Miner greatly improve the performance of the HUIM approach from

28 to 59 percent.

7 Research publications

1. Patel Suresh B, Sanjay M. Shah, and Mahendra N. Patel. "An Efficient High Utility Itemset

Mining Approach using Predicted Utility Co-exist Pruning." International Journal of

Intelligent Systems and Applications in Engineering 10, no. 4 (2022): 224-230. (SCOPUS

Approved, ISSN: 2147-6799)

2. Patel Suresh B, Sanjay M. Shah, and Mahendra N. Patel. "An Efficient Search Space

Exploration Technique for High Utility Itemset Mining." Procedia Computer Science 218

(2023): 937-948. (SCOPUS Approved, ISSN: 1877-0509)

3. Patel, Mahendra Narottamdas, Sanjay M. Shah, and Suresh B. Patel. "An Adjacency matrix-

based Multiple Fuzzy Frequent Itemsets mining (AMFFI) technique." International Journal

of Intelligent Systems and Applications in Engineering 10, no. 1 (2022): 69-74. (SCOPUS

Approved, ISSN: 2147-6799)

4. Patel, Mahendra N., S. M. Shah, and Suresh B. Patel. "An Efficient (MFFPA-2) Multiple

Fuzzy Frequent Patterns Mining with Adjacency Matrix and Type-2 Member Function." In

International Conference on Advances in Computing and Data Sciences, pp. 502-515. Cham:

Springer Nature Switzerland, 2023.

8 References

[1] D.-N. Le Ashour, Amira S., Nilanjan Dey, “Biological data mining: Techniques and
applications,” Min. Multimed. Doc., vol. 1, no. 4, pp. 161–172, 2017.

[2] W. Z. Cheng and X. Li Xia, “A fast algorithm for mining association rules,” Proc. IEEE Int. Conf.
Softw. Eng. Serv. Sci. ICSESS, pp. 513–516, 2014.

[3] H. Yao and H. J. Hamilton, “Mining itemset utilities from transaction databases,” Data Knowl.
Eng., vol. 59, no. 3 SPEC. ISS., pp. 603–626, 2006.

[4] J. Hu and A. Mojsilovic, “High-utility pattern mining: A method for discovery of high-utility
item sets,” Pattern Recognit., vol. 40, no. 11, pp. 3317–3324, 2007.

[5] Y. Liu, W. K. Liao, and A. Choudhary, “A two-phase algorithm for fast discovery of high utility

22

itemsets,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 3518 LNAI, pp. 689–695, 2005.

[6] X. Liu, P. Du, and X. Qiao, “Study on effect of master DOF on errors of substructure static
condensation modal analysis,” Zhongguo Jixie Gongcheng/China Mech. Eng., vol. 22, no. 3, pp.
1–12, 2011.

[7] H. Ryang, U. Yun, and K. H. Ryu, “Fast algorithm for high utility pattern mining with the sum
of item quantities,” Intell. Data Anal., vol. 20, no. 2, pp. 395–415, 2016.

[8] V. Tseng, C. Wu, B. Shie, and P. Yu, “UP-Growth: an efficient algorithm for high utility itemset
mining,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 253–262.

[9] Y. Shen, “Objective-Oriented Utility-Based Association Mining,” in In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings, 2002, pp. 426–433.

[10] W. Jentner and D. A. Keim, Efficient Algorithms for High Utility Itemset Mining Without
Candidate Generation, vol. 51. Springer International Publishing, 2019.

[11] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efficient algorithms for mining high utility
itemsets from transactional databases,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1772–
1786, 2013.

[12] W. Song, Y. Liu, and J. Li, “Mining high utility itemsets by dynamically pruning the tree
structure,” Appl. Intell., vol. 40, no. 1, pp. 29–43, 2014.

[13] A. Y. Peng, Y. S. K. B, and P. Riddle, “mHUIMiner : A Fast High Utility Itemset Mining
Algorithm for Sparse Datasets,” pp. 196–207, 2017.

[14] M. Liu and J. Qu, “Mining high utility itemsets without candidate generation,” ACM Int. Conf.
Proceeding Ser., pp. 55–64, 2012.

[15] H. Yao, H. J. Hamilton, and C. J. Butz, “A Foundational Approach to Mining Itemset Utilities
from Databases,” Proc. 2004 SIAM Int. Conf. Data Min., vol. Society fo, pp. 482–486, 2004.

[16] Y. C. Li, J. S. Yeh, and C. C. Chang, “Isolated items discarding strategy for discovering high
utility itemsets,” Data Knowl. Eng., vol. 64, no. 1, pp. 198–217, 2008.

[17] Q. H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørvåg, and T. L. Dam, “Efficient high
utility itemset mining using buffered utility-lists,” Appl. Intell., vol. 48, no. 7, pp. 1859–1877,
2018.

[18] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM: Faster high-utility itemset mining
using estimated utility co-occurrence pruning,” Springer, Cham. pp. 83–92, 2014.

[19] Ahmed, Chowdhury Farhan, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, and Young-Koo
Lee. "An efficient candidate pruning technique for high utility pattern mining." In Advances in
Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok,
Thailand, April 27-30, 2009 Proceedings 13, pp. 749-756. Springer Berlin Heidelberg, 2009.

[20] Fournier-Viger, P., Lin, J. C. W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., & Lam, H.
T. (2016, September). The SPMF open-source data mining library version 2. In Joint European
conference on machine learning and knowledge discovery in databases (pp. 36-40). Springer,
Cham.

.

